Inhibition of IFN-gamma-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion.
نویسندگان
چکیده
Mycobacterium tuberculosis (MTB) persists inside macrophages despite vigorous immune responses. MTB and MTB 19-kDa lipoprotein inhibit class II MHC (MHC-II) expression and Ag processing by a Toll-like receptor 2-dependent mechanism that is shown in this study to involve a defect in IFN-gamma induction of class II transactivator (CIITA). Exposure of macrophages to MTB or MTB 19-kDa lipoprotein inhibited IFN-gamma-induced MHC-II expression, but not IL-4-induced MHC-II expression, by preventing induction of mRNA for CIITA (total, type I, and type IV), IFN regulatory factor-1, and MHC-II. MTB 19-kDa lipoprotein induced mRNA for suppressor of cytokine signaling (SOCS)1 but did not inhibit IFN-gamma-induced Stat1 phosphorylation. Furthermore, the lipoprotein inhibited MHC-II Ag processing in SOCS1(-/-) macrophages. MTB 19-kDa lipoprotein did not inhibit translocation of phosphorylated Stat1 to the nucleus or Stat1 binding to and transactivation of IFN-gamma-sensitive promoter constructs. Thus, MTB 19-kDa lipoprotein inhibited IFN-gamma signaling independent of SOCS1 and without interfering with the activation of Stat1. Inhibition of IFN-gamma-induced CIITA by MTB 19-kDa lipoprotein may allow MTB to evade detection by CD4(+) T cells.
منابع مشابه
Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling.
During infection of macrophages, prolonged signaling by Mycobacterium tuberculosis (Mtb) or its 19-kDa lipoprotein (LpqH; Rv3763) inhibits IFN-gamma-induced expression of several immune function genes, including class II transactivator (CIITA), which regulates class II MHC. Mtb does not inhibit early IFN-gamma signaling events, e.g., Stat1alpha activation. This study analyzed downstream mechani...
متن کاملRecombinant Lipoprotein Rv1016c Derived from Mycobacterium tuberculosis Is a TLR-2 Ligand that Induces Macrophages Apoptosis and Inhibits MHC II Antigen Processing
TLR2-dependent cellular signaling in Mycobacterium tuberculosis-infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these eff...
متن کاملToll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis.
Mycobacterium tuberculosis (MTB) induces vigorous immune responses, yet persists inside macrophages, evading host immunity. MTB bacilli or lysate was found to inhibit macrophage expression of class II MHC (MHC-II) molecules and MHC-II Ag processing. This report characterizes and identifies a specific component of MTB that mediates these inhibitory effects. The inhibitor was extracted from MTB l...
متن کاملPotent inhibition of macrophage responses to IFN-gamma by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2.
Mycobacterium tuberculosis is a highly successful pathogen that can persist and cause disease despite an immune response. One potential mechanism for resisting elimination is by inhibiting the action of IFN-gamma. We have previously shown that live M. tuberculosis inhibits selected macrophage responses to IFN-gamma, and that purified M. tuberculosis 19-kDa lipoprotein inhibits induction of sele...
متن کاملExosomes Released from M.tuberculosis Infected Cells Can Suppress IFN-γ Mediated Activation of Naïve Macrophages
BACKGROUND Macrophages infected with Mycobacterium tuberculosis (M.tb) are known to be refractory to IFN-γ stimulation. Previous studies have shown that M.tb express components such as the 19-kDa lipoprotein and peptidoglycan that can bind to macrophage receptors including the Toll-like receptor 2 resulting in the loss in IFN-γ responsiveness. However, it is unclear whether this effect is limit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 171 1 شماره
صفحات -
تاریخ انتشار 2003